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The question of constructing a membrane theory of anisotropic shells by reducing the 
three-dimensional problem of the theory of elasticity of an anisotropic body to a two- 

dimensional problem of shell theory is considered. But special attention is hence turned 

to those stresses which are not the subject of discussion in the classical theory of aniso- 

tropic shells [I., 21. Some analytical criteria for a shell to be a membrane are proposed. 

1, Let us consider a homogeneous anisotropic shell of constant thickness h, when 
there is just one plane of elastic symmetry, parallel to the shell middle surface, at each 

point of the shell. It is considered that the middle surface is represented by orthogonal 

curvilinear coordinates a, @, which coincide with the lines of principal curvature of 

the middle surface. The position of any point on the shell is defined by the orthogonal 
coordinates a, p, y, where the coordinate y is rectilinear. It is also considered that 
the shell remains elastic, subject during deformation to a generalized Hooke’s law of the 

form [l] 
e, = a,,% + a,2(7p + %4& -i- %%a, efiy = a4,rfiu + a4,ray 

ep = a12cfa + a22G@ + a23g~ + a26TU@t cay = ak3t.fiu + a5550 (**$I 

e, = $36, + %3$ i-a330y + a36Ta? 

eJ,3 x u,~G~ + a,&3 -t a,&, i- aB6k3 

where ei are the strain components, o i and r&the stress components, and a& are elastic 

constants. 
Underlying the theory proposed here is the assumption that the mainfrom theviewpoint 

of classical theory, stresses are uniformly distributed over the shell thickness, i. e. 

6, = T, I h, cr9 -2 T, lh, T,~ = S I h (1.2) 

where Ti and 5’ are the internal tangential forces of the shell per unit length of the 

middle surface. 
Taking account of (1.2). we obtain for the moments to 1 & k,y z 1 accuracy 

Aft _- (J, &_I, z= 0, N =z I.) (1.3) 

Henceforth, quantities of the order of kiy will be neglected as compared with unity 
to the same accuracy, Certain care is required in discarding terms with factors contain- 

ing %k ; the fact is that in the general case the elasticity coefficients can form such 

quantities as cannot, in combination with kiy , be neglected as compared with unity. 

2, To the accuracy assumed, the equilibrium equations of a differential element of 
the body have the form 

A @&),z - AR,&; + A (AT,fi),3 + AA,@ Qa -+ (~~~Z~~~~~~~,~ :” 0 

B (Aop),p --A,,,, i-B (&&a + BB,,r,s + (Ha’Hir,sy),Y = 0 (2.1) 

(H,H;?o,),, - cr,ABkl - q,ABk, + (Bz,,),a + (il~~),~ :=: 0 
H, :=~m A (1 + k,y), II, =m H (1 -i_ k,y) 

Here -1’1,. Ii, are tame’ coefficients, R , B the coefficients of the first quadratic form, 
and kithe principal curvatures of the middle surface. 
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Let a shell to be loaded so that on its outer surfaces 

ZIY = x*, Z,JY = P, by =T: Z’, tr = %h) (2.2) 

‘65Y = - X-, Z& = - Y-, sy = - z- (7 = -‘i&) 

Substituting values of the stresses da, ag, tab from (1.1) into the two first equilibrium 

equations (2.1). and integrating with respect to y, we obtain t,, and Tb( to the accuracy 

of the integration functions which should be defined according to (2.2). substituting the 

values of tau and ZY,, obtained here, together with the values of o, and og, into the third 
equilibrium equation and integrating with respect to y , we obtain u, and still an integra- 

tion function which should afso be defined according to (2.2). 

Satis$ing the conditions on the surfaces (2.2) by using the values of I&, tg, and o, 

obtained above, we have 

@T&a - T,B,, + (AS).@ + SA,@ ‘=f - ABX, 

(AT&B - T,A,B + (Rq,, i- S&, = - ABY, (2.3) 
T,kl + Tzkz = 2, +- ‘i&Z,” 

x'l 
t,y = - 2 -I- -;-x2, 

Yl 
Zn_( .= -. -+- -$Y2, 

2 
cs, = I'$ i- yP, +pPz (2.4) 

x1=x+--x-, Y,=Y’-Y-, z1 = Z” - z- (2.5) 

x,=x+.+x-; Y,=Y+-j-Y-, 2% = 2’ -+- z- 

We therefore obtain the system of equations (a, 3). which differs only in the small 
from the corresponding system of the ordinary theory [I. 43. 

Together with (2.3), formulas (2.43 have been found which can be used to determine 
those stresses which can, in combination with “basic” stresses (1.2), be nominal for shells 

fabricated from modem reinforced plastics with reduced resistivity to shear and trans- 

verse rupture [S]. 

St The question of de~errn~n~ng the displacements fl, 2] is of special interest in the 
membrane theory of ankotropic shells_ 

The relation between the strain and displacement components of any point of the shell 

us (a? By Y>, 4 (a7 B* r)* u, 6% B, y) is written as follows, to the accuracy assumed : 

According to (1. I), (1.2). (2.4) and (3.1) we can write 
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Tl _+ 7’2 
s %, Y = %3 h a23 h -t- a36 h -1 a33 p, + YP? $ 7%) (3.2) 

Tntegrating (3.2) with respect to y between the limits 0 and y, where we assume 
UY = W (CC, f3) for y = 0, we obtain 

1 uy=w-+yja13 A 2+_ a23 q -I- cc36 -$ -f- as& 
! 

-f- ; a,$, -I- ; +.3&S (3.3) 

Here w (a, @) is the normal displacement of the shell middle surface. 

Furthermore, according to (I. 1) and (3. I) we easily obtain, because of (2.49 and (3.3) 

Integrating (3.4) with respect to y within the limits 0 and y, and assuming here that 

*a = u (a, P), Up = v(a, /3) for y = 0, we obtain for the tangential displacements 

of any point of the she11 

71, = u - _Lw 
A ,~~+~~s~~X~+~X~~ 4-a45(+I; +-gYq - 

-- P tfA 1.a S-Z- (g/g %A, x - --c- %P,, n 12A (3.5) 

up-l?--_ w, a t a41 
( 
pi ~Y,)s.*6/+x,+~x*j- 

- & P”1,p - &a& I p - &a&, P Y 

Substituting the values of EL,, up , z.+ from (3.5) and (3.3), respectively, into the geo- 
metric relationships (3. I) which have still not been utilized fully. we obtain 
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where the following notation has been used 

Fi = a,,X* + u*5Yi’ Qi = aJi + a$6 

P,* = a 2 + as3 2 -k n36 G + a,,P, = T* + a33P1 I3 h 

T1 

(3.7) 

T* = alBh + a,23 h _G- + as6 + 

as well as the known representations 

1 
El = -li,5-/-- /,iB A, ;P -!- &W 8, = +V-t& B, .U + /C,W (3.8) 

A 
01 = 7 

i 

For the linear operators Li we have 

(3.9) 

On the other hand, according to (1.2), (2,4),(2.5). (3.7), for the generalized Hooke’s 
law equations needed here, we have 

s 
?- %3~ + 63 

In the expressions presented for the strain components (see& 6) also), the factors for 
the y of all powers can be so small in some particular cases that to the accuracy accepted 
they should be neglected as compared with ai, 0 or as compared with terms containing 
Y to lower degree. However, it is impossible to say or do this in the general case. Hence, 

in the subsequent discussions all the terms in the formulas for the components of the 
strain tensor must be left without any modification; however, terms having the order 

kiv in obvious cases can hence be neglected as compared with unity. 
Comparing the values of the strain components obtained with the corresponding repre- 

sentations (3.6), and equating coefficients of y to the zero power, we obtairi 
fXlOt \ I 

1 -i_ _-&_ A, p + Jew = a,, q -t_ a,, 3 -/- a,, g -f- y zl -k- 1 AU,3 
;& z,* 

7 

I 
k g-v,p -I 

GB_. B, ,u + h+,j = at2 TM- + al2 $ + az6 +- + y Zl $- #I.,! -!- Z,* 

A 11 

B.-1 f+-+A i’ ) * _E_ (_Y) 
,a 

-_ ag6 + $. al6 $- .-/- as6 $ -j- Jff- & -I- ii:.. +- Zi* 

The equations presented are a complete system of differential equations which can 
be utilized to determine the desired displacements of the problem. These equations 
contain terms which appeared as a result of taking account of phenomena associated 
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with the transverse deformations of the shell, The effect of these terms on the displace- 
ments is probably not always perceptible; however, these terms must be left for analysis 

in the general case because cases are not excluded in which taking account of the phe- 

nomena related to the transverse deformations of the shell can become necessary. 

Furthermore, equating coefficients of the remaining y, we obtain four groups of refa- 

tionships. 

2L,(w)= $f- 

Second group 

L,(p) = -9 LI(zi)-kii,TZ,-- TZ,*-&FF,,.-&~,fi~P 

L,(T*)= --LL,(Z,)-k,~Z,_~Z,*-~Q',a-~B,aFz 
(3.12) 

Ls(T*)= -~L,(Z,)--ZZ,*--~~~F,i,R-~ai$Q,! 
.a 

Third group 

LI K> - k,Zs* = 0, L, (2,) - k&T,* = 0, L, (2,) = 0 (3.13) 

Fourth group 

L, G*) = 0, La (.&I*) = 0, L, (z,*) = 0 (3.14) 

Satisfying conditions (3.11)-( 3.14), we completely assure a membrane shell state. 
The degree of purity of the membrane state of the shell depends on the level of accu- 
racy of compliance with conditions (3.11)~(3.14). 

Examining (3.11)-( 3.14), we note also that constraints should be imposed not only on 
the shell geometry and the external loading to assure a membrane state of the shell, but 
also on the mechanical characteristics of the material of the shell. More accurately, 

consistent geometric, static and physical constraints should be imposed on the shell. 

4. The stresses c&, csp and &a, on which the hypothetical constraints were imposed, 

can be represented by using strains. 
According to (2.4) and (3.6) we obtain from (1.1) 

+ $- W-j + r3 [s L (2,) - k, z Zs*] - rp -$$ L1 (z,*) 
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.B(Z 
” I 

) 22 

2A \B ,,-ass~ 1 + (4.3) 

CB Qz 
f ) 

ZZ* 
2‘4h \B.a+a3f)x 1 + 

According to (3.11)-(3.14), and taking account of (2.4), (2.6) and (3.Q we obtain 

from (4.1)-(4.3) to determine the stresses 

alloa + a120g + a,sr,p = al - a,sP, 

%2% + a2,ca + azerap = cz - a2,P1 

%db + a26a& $_ u88za@ = w - as&PI cw 

Solving the system (4.4) for the stresses, we finally find (see also (3.8) for representa- 

tions of Ei, CO) 

oa = B,,E, + &sea + B,,,o - K, 
i 

+ -+- $ & [(B-G)‘ 0 + (AYz)* PI} 

op = Bz2ts, -;- B,,E~ ,j- B,,w - R, 
i 
$4 &&umJ, a -t w% PI} P.5) 

T arp = B,i,(~ + &A + &.A - frT, 
i $+ +- & rmx a -t- VW, PI} 

Ki = &I% -t &,a,, + &a,B (4.6) 

% = b2a06 - ate2) Q-l, 4, = (adb - wd Q-l 

4, = (alla,, - alaa) Q-l, 4, = h&J - wG*) Q-l 
4, = kw22 - ala2) Q-‘, B12 = (ws6 - a12~ss) Q-l 
Q = bw22 - ha) %3 4 2%&~2* - w%3a - %2%32 (4.7) 

Examining (4.5), we remark that the stresses oa, op, T,s obtained in this manner do 

not vary over the shell thickness, i, e. the initial condition that the shell be in the mem- 
brane state is assured. 

It is seen from the means of obtaining the formulas for the stresses elucidated above, 

that the conditions (3.11)-(3.14) are sufficient to assure a membrane state of stress of 

the shell. 
However, conditions (3.11)-(3.14), which assure the membrane state of the shell, can 

be replaced by weakened conditions assuring the membrane state of the shell to some 
approximation. 

The weakened conditions can be obtained by assuming that those parts of the stresses 
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(Ja, o 8’ rss , which vary over the shell thickness are negligibly small as compared with 
those parts of the stresses which do not vary with thickness. 

The weakened conditions for the membrane state are easily obtained from (4.1) - (4.3) 

I( [ 
7 -& W + & Ii’s, a -1 &j -4, p&3- lz,P,* - a13 +] + 

$- r2 [f 4 (PI*) + & F,, oL + &A, pQz + klq J’, t- 

- - t s Z,*j + y3 [z L, (2,) - kl z Z2*-j - 

I r {T &2(W) + -&- QLP i- ,I 24~ B, .F1 f W1* - as3 $1 -t 

t-4 r3 $ L, (ZJ - y4z L, (Z*)/ [co - a3BPl]-1\ &j (k,h)” j 

where ??Z is a number characterizing the degree of the accuracy required. 

(4.8) 

6, The membrane theory of anisotropic shells under the assumption that the normal 
displacement u, is independent of the coordinate y merits attention. 

To the fundamental assumption (1.2) let us append a new assumption which is repre- 
sented analytically as follows : 

ey - uy,y = 0, UY = w (a, B) (5.1) 
In the new formulation the static part of the problem does not undergo any changes, 

i.e. the internal forces will be defined in conformity with (2.3), and the stresses by 

means of (1.2). (2.4). (4. S). The formulas and equations for the displacements are sim- 
plified considerably. 

Proceeding as usual, we obtain for the tangential displacements 

Furthermore, for the strain components still not utilized we obtain the following more 
simplified representations 
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J%(W) +$+&+&($j,,lf 

Comparing (5.2) and (5.3) with (3.5) and (3.6), respectively, we note the essential 
simplification in the new representations, which is that there are no longer any terms 
with factors for 7 greater than the second degree here. The coefficients of lower powers 

of 7 are also simplified somewhat. 

Taking account of (1.2). (2.4)-Q. 6) and (3.Q in conformity with (1.1) and (S. 3) 
we obtain three equations to determine the desired displacements and two groups of 

relations, compliance with which will assure the membrane state of the shell. 
The equations to determine the displacements are no different than the equations of 

the general case obtained earlier, i.e. than (3.10). 

However, by taking (5.1) we thereby weaken the conditions (3.11)-( 3.14) somewhat, 
since in place of four groups of relationships for the membrane statewe here obtain two 
simpler groups of relationships. 

First group 
5 

LI (w> = a13 h ’ FL, -- 
2A 

Second group 

fF2,af &4,,3Q2 = - a13Z2* 

$ Q2,,3+ & B, .F2 = - a23Z2* 

$ (+j, p + + (+j, a = - a,6~2” 

(5.4) 

(5.5) 

The weakened membrane state conditions are also simplified. where we have in place 

of (4.8) 

I r _IY _ L,(w)+- & F,,. -t & A,pQ, - ~13 $I+ y2[$ Z,* f- 

+-- ’ F 
2Ah 2,G -1- & 4 fiQ,]j (~1 - a,,+4 W)"I 

Ii L 
r L2w-~o1,P+ ~B,"F,--a,,~]-Lr'[~Z2*+ 

+ & Q2,fi -;- & B&j} 1~2 - a234 \( I VQ)"l (5.6) 
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6. As an illustration, let us consider a primitive example. 
A closed circular cylindrical shell @I =: 0, k, = 11’ R, = 1 / R, A y 1, II ==- 1, 

length E) is clamped at the endfaces perpendicular to the axis of rotation so that 

U = 0, ?Z z 0 (G = 0) 

TI --1: 0, S-O (1 - I) 
The shell is loaded so that (6.1) 

X+ = pa, x- :z (j z+ z _q, z- z (), y+ zz y- z 0 (6.2) 

then we obtain from (2.4)-(2.6) for the load terms 

x1 = x2 = pa, z1 = z, = --(It Yl = Y2 = 0 (6.3) 

z1* - z,* = p, I’1 = ‘,‘ahp - “/zq, P, -= - yeq, P, = --‘[zp i h 

Solving the system (2.3) taking account of (6.1)-(6.3), we obtain for the tangential 
forces T1 = ‘l‘$ (12 - d), s = 0, T, = R (‘fahp - q) (6.4) 

By virtue of (6.2)-(6.4) we have from (1.2), (2.4) for the stresses 

P R h 
\i 0 a%=~(fZ-~2), h %p-q,,? ‘,$= ZQ zz - 

c 
(6.5) 

1 i h 
T 

I 
\ 

aY = Pa --$+--J-p zpu = 0, CITY -1 
i 

_-$-p--g 
) 

9 -_r ---_z--- 
2 2‘Yl 

All these stresses are evidently of nominal interest for an anisotropic shell. 

Solving the system (3.10) taking account of (6.1). (6.3), (6.41, we obtain for the dis- 
placements u (a) I> (CL), (0 (~2) 

il = @II-& !I%* - -zI’-, 7 
H / h 

-i @q-j yp--"I, Lanll(++p)a 66) 

) .--.,.(+-&). 

Examining (6.5) and (6.6), we note that nominal stresses and displacements can appear 
in a shell in the new membrane theory formulation, which occur due to taking account 
of the phenomena associated with the transverse mechanical characteristics of the shell. 

In the case under consideration, the membrane state conditions (6.5) and (5.5) are 
written as follows in conformity with (3.7). (3.9)(6.2), (6.3) : 

a,,p $- U,Q = 0, n,,p -= 0, ct4;p + Q&p y= 0 W) 

From (6.7) and (6.8) those values of the geometric, force and physical characteristics 
of the shell for which the membrane state of the shell will be assured are easily estab- 

lished. 
For example, let P r= 0, (I# 0 : conditions (6.7) and (6.8) become 

Then in order to assure a membrane state it is sufficient that al3 = ut3 .= q#G = 0 
(the condition h -’ 3; is not discussed for obvious reasons). In this case, from (6.6) we 
obtain for the displacements 
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qR qff 9R2 
u =-al%-----a, h u = - a26 - CL h ’ 

w = - a22 - 
h 

(6.10) 

The values of the displacements (6.10) presented here agree with the appropriate dis- 
placements obtained by classical theory p], just as it should. Assuming ai3 = az3 = 

= ~3~ == 0, we pointedly neglect the normal stresses oy while determining the displace- 
ments, and in combination with the initial assumptions we accepted above; this forms 
the complex of initial hypotheses of the classical theory. 

Finally, let us mention that the weakened membrane state conditions (5.6) are satis- 

fied in the example discussed (p = 0, q # 0) if, for example aI3 I ai2 < 1, uz3 I ap2 < 1, 

% I azg < i (for m = 1). 
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Questions of constructing tensor elsticity relationships within the accuracy of the Kirch- 
hoff-Love hypotheses are discussed herein. It is clarified that it is impossible to conserve 
simultaneously the static-geometric analogy and to assure application of theorems of 

the theory of elasticity by using not too complex elasticity relationships. In this con- 
nection, two modifications of the elasticity relationships in the linear theory of thin 

elastic shells are proposed. The first modification retains these theorems in the linear 
theory of thin elastic shells. The second modification satisfies the requirements of the 

static-geometric analogy, but violates the reciprocity theorem (in the small). 
Among the possible modifications of the elastic&y relationships used in the linear 

theory of thin elastic she&one of the most simple ones is the modification presented 

by the authors of [l] and @I. Nevertheless, these relationships answer a number of requi- 
rements to be discussed below. At the same time the authors of [3] indicated that these 
relationships are not of tensor character. 

In this paper we consider the cons~ction of tensor elasticity relationship differing 
slightly in the lines of curvature from relationships presented in [l] and @]. 


